Water Environment Federation & AZ Waters Student Competition

Presentors: Khalid Abushousha, Shiqing Cai, Jacob Mitten, Wes Levin, Jocelyn Ramirez

Date: 4/24/2020

Acknowledgements

The NAU 2020 WEF Student Design Competition Team would like to thank the people and organizations listed below for their help in our success!

- Dr. Jeffrey Heiderscheidt- Technical Advisor
- Nick Yonezawa- WEF Student Design Competition Coordinator
- AZ Water Association
- Water Environment Federation and WEFTEC
- NAU School of Civil and Environmental Engineering

Intro: Project Description

- **Purpose:** To retrofit the Kyrene Water Reclamation Facility (KWRF) from a 9MGD average capacity to a 3MGD
- Client: AZ Water & WEF
- Location: Tempe, Arizona
- **Stakeholders:** AZ Water, AZ Department of Environmental Quality, WEF, NAU, and the City of Tempe

Figure 2: Site Location [1]

Objectives

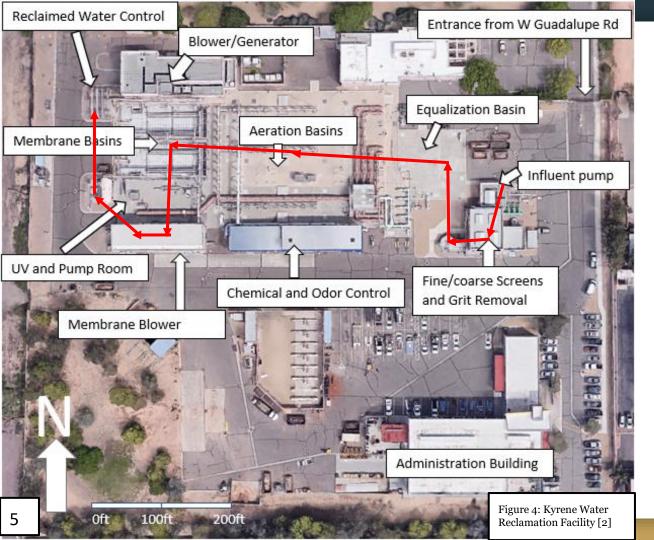
Requirements

BAS

- Reopen operations in 2025
- Reduce flow capacity from 9 MGD to 4 MGD
- Produce Class A+ Reclaimed Water Effluent
- Maintain Effluent Commitments to:
 - Buckeye Water Conservation and Drainage District
 - Tres Rios
 - Palo Verde Nuclear Generating Station

<u>Criteria</u>

- Optimize Energy Efficiency/Promote Green Energy
 - Tempe City 2030 Goal: 100% Renewable Energy
 - Tempe City 2050 Goal: Carbon Neutral


Constraints

- Site Dimensions
- Budget

4

• Permit Requirements

Figure 3: Kyrene Plant Water Pumps (Team photo)

Existing

Preliminary Treatment

- Influent Pump
- Fine/Coarse Screens
- Grit Removal

Primary Treatment

• Equalization Basin

Secondary Treatment

- Aeration Basin
- Membrane Basins

Advanced Treatment

- UV and Pump Room
- Reclaimed Water Control

Site Assessment Site Visit/Research

Figure 6: UV Light Treatmen (Team Photo)

Figure 7: Jocelyn admiring UV Light Treatment

(Team Photo)

UV AND PUMP ROOM

Figure 5: Return Activated Sludge Pipes with Jocelyn for scale (Team Photo)

Plant Requirements Source Water Characteristics

- AZ Waters provided excel sheet of source water data
 - Collected between the years of 2004-2019
 - Two influent pipelines: Kyrene Rd & Rural Rd.

Table 1: Source Water Characteristics

Major Characteristics Studied								
Flow	Total Kjedahl Nitrogen							
Biochemical Oxygen Demand	Ammonia							
Chemical Oxygen Demand	Nitrate							
Total Suspended Solids	Minerals (i.e. CA ²⁺)							
Total Phosphorus	Heavy Metals (i.e. Arsenic)							

Table 2: Sample of source water characteristics

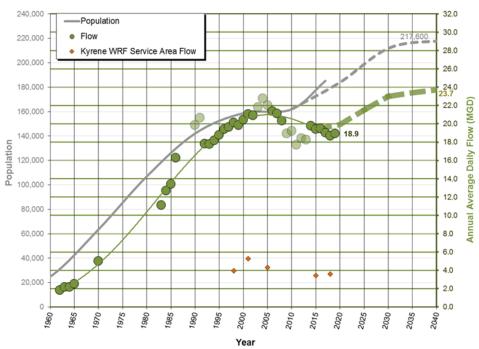
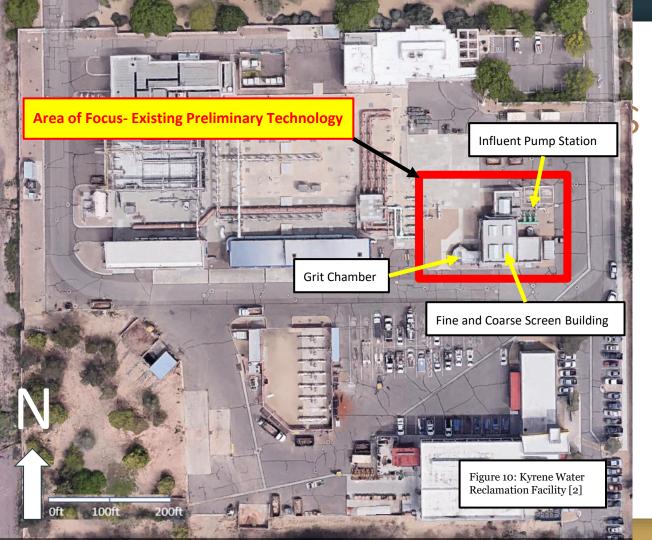

KWRF Flow and Loading Summary									
Year Flow Rate BOD COD TSS (MGD) (mg/L) (mg/L) (mg/L)									
2009	3.70	318.40	696.50	294.42					
2010 3.33 373.38 813.00 377.69									

Figure 8: 1 of 3 Distribution Pipelines (Team Photo)

Plant Requirements Population Estimation

- Population growth is minimal
- Goal is independent of population
 - Old Capacity Flow: 9MGD
 - New Capacity Flow: 4MGD
 - New Average Flow: 3MGD

City of Tempe Population & Wastewater Flow


Figure 9: Population Chart [3]

Plant Requirements Effluent Regulations

- Aim to produce Class A+ Effluent
- Regulations determine the effluent standards
 - Arizona Administrative Code (AAC), Title 18, Chapter 11
- Biosolids disposal regulations:
 - AAC Title 42, Chapter 2
 - AAC Title 18, Chapter 9
 - Clean Water Act

Table 3: Some Class A+ Effluent Requirements [4]

Parameter	Standard Level
Turbidity	2 or less NTUs (Daily Average)
Turbiaity	5 or less NTUs (Any time)
Fecal Coliform Organisms	23 FCU/100 ml (Single Sample)
Total Nitrogen	10 mg/L

Existing Preliminary Components

- Influent Pump Station w/ influent meter
- 3 Variable Frequency Drive (VFD) Submersible Pumps (Wet Well)
- 2 Coarse Screens
- 2 Fine Screens
- Grit Chamber (14.4 MGD Peak Flow)

Preliminary Treatment Decision Matrix

Detailed Preliminary Decision Matrix											
Criteria	a	Weight		nersible pumps, 2 coarse Pista 360 Grit Chamber	Alt 1 - 2 VFD submersible pumps, 2 coarse screens, no fine screens, Mectan V Grit Chamber		Alt 2 - 2 VFD turbine pumps (dry well), 2 coarse screens, no fine screen, Pista 360 Grit Chamber		Alt 3 - 2 VFD submersible pumps (wet well), 1 grinder, Aerobic Grit Chamber		
			Input	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score	
Feasibility	Area (m2)	109/	265.5		265.5		265.5		250.0		
reasibility	Final Score	10%	4.7	0.5	4.7	0.5	4.7	0.5	5.0	0.5	
	Operational Cost (\$/yr)		1012326		89896		85968		96000		
0.014	Life Span (yr)		25.0		25.0		25.0		22.5		
O&M	Staffing	20%	2.0		2.5		3.0		2.0		
	Initial Score	1	1.8		2.8		3.0		2.5		
	Final Score	I	2.9	0.6	4.6	0.9	5.0	1.0	4.1	0.8	
	Power (kW-hr/yr)	1	16595510		1087834		1023437		1356000		
Environmental/Social	By-Products	2004	1.0		1.5		2.0		1.3		
Impacts	Initial Score	30%	0.6		1.7		2.0		1.4		
	Final Score	I'	1.4	0.4	4.2	1.3	5.0	1.5	3.4	1.0	
Liferrale Costs	Capital Cost (\$)	100/	26921200		8230300		10230300		6500000		
Lifecycle Costs	Final Score	10%	1.2	0.1	3.9	0.4	3.2	0.3	5.0	0.5	
	Debris Rem. (%)	1	100%		80%		80%		95%		
Contaminant Removal	Grit Rem. (%)	2004	95%		75%		95%		75%		
Efficiency	Initial Score	30%	2.0		1.6		1.8		1.7		
	Final Score	í′	5.0	1.5	4.0	1.2	4.5	1.4	4.3	1.3	
Total Score				3.1		4.3		4.6		4.2	
Selected Technology								Best			
11	· · · · · · · · · · · · · · · · · · ·										

Preliminary Treatment Design Recommendations

Figure 11: RakeFlex Screens [5]

$$v = \frac{1}{n} R^{2/3} S^{1/2}$$

<u>2 Coarse Screens:</u> -RakeFlex Duperon - Power: 136 kW-hr/yr -Headloss: 1.5 inches

<u>Screening Channel</u> -Each channel capacity is fit for peak flow (6 MGD) -Concrete material

<u>Channel Dimensions</u> Slope (S) = 0.001 m/m Width (W) = 0.75m Depth (D) = 0.9

Figure 12: Pista Vortex Grit Chamber [6]

<u>1 Pista 360-degree Vortex Grit Chamber</u> -7 MGD capacity

-Removes 95% of grit 150µm and higher -45,269 kW-hr/yr

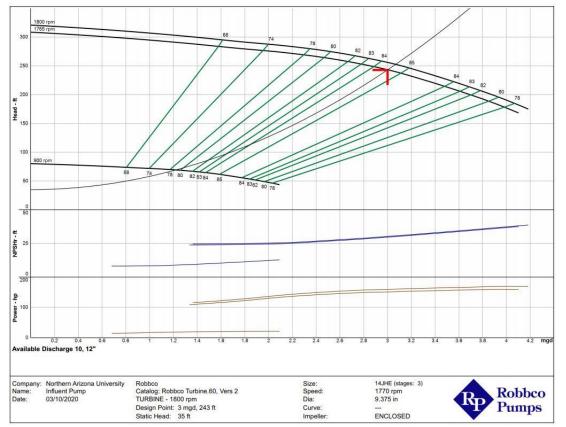

Channel Requirements

Table 4: Great Lakes Upper Mississippi River Board (GLUMRB) Requirements Comparison [7]

Table 4. Great Lakes Opper MI		(GLOWIND) Requirem	ents comparison	L/J	I			
(GLUMRB Require							
Variable	Requirement	Designed Value	Pass/Fail		\bigvee			
Avg. velocity	>0.4 m/s	0.52 m/s	Pass		N			
Peak velocity	<0.9 m/s	0.84 m/s	Pass				85 SF	Efflu
Channel approach length : water depth	10:1	10:1	Pass			Coarse !	Screens	8
Freeboard	0.6 m	0.6 m	Pass					
Redundancy	One Redundancy	One Redundancy	Pass				3.5	п
			Infl	luent Point	(2) (3)	- L		
10					0.75 m – J			-

Figure 13: Diagram of Screening Room

Preliminary Treatment Design Recommendations

Influent Pump Station

Table 5: Influent Pumps

Pump No.	1	2
Flow (MGD)	1.5	1.5
Total Head (ft)	60	60
RPM	900	900
Efficiency	84%	84%
Power (hp)	112	112

Figure 14: Pump Curve

Existing Primary Components

- Flow Equalization Structure
- Equalization Basin (Captures Flows in Excess of 11.7 MGD)
- 3 VFD Equalization Pumps
- Coarse Bubble Diffusers
- 2 Equalization Blowers

Primary Treatment Decision Matrix

	Detailed Primary Decision Matrix									
~		Weight	Exi	isting	Alt. 1 Re	ct. Clarifier	Alt. 2 Micro	sand Clarifier	Alt. 3 Reduced EQ Basin	
Criteria		Weight	Input	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score
Feasibility	Area (m2)	10%	1275.9		538.8		445.3		425.2	
Feasionity	Final Score	10%	1.7	0.2	3.9	0.4	4.8	0.5	5.0	0.5
	Operational Cost (\$/yr)		100000		104000		149549		100000	
C 224	Life Span (yr)	2000	20.0		19.0		30.0		30.0	
O&M	Staffing	20%	3.0		1.0		1.0		3.0	
	Initial Score	· '	2.7		1.9		2.0		3.0	
	Final Score	L'	4.4	0.9	3.2	0.6	3.3	0.7	5.0	1.0
	Power (kW-hr/yr)	,,	1143180		431060		16848466		381060	
Environmental/So	By-Products	20%	3.0		2.0		2.0		2.0	
cial Impacts	Initial Score	20%	1.3		1.6		0.7		1.7	
	Final Score	L'	4.0	0.8	4.7	0.9	2.1	0.4	5.0	1.0
Lifecycle Costs	Capital Cost (\$)	10%	441000		2113000		323253		220500	
Lifecycle Costs	Final Score	1070	2.5	0.3	0.5	0.1	3.4	0.3	5.0	0.5
	Particle Rem. (%)	<u>ا</u> ۲	0%		75%		90%		0%	
Contaminant Removal	BOD Rem. (%)	40%	0%		27%		80%		0%	
Efficiency	Initial Score	40%	0.0		1.2		2.0		0.0	
	Final Score	<u> </u>	0.0	0.0	2.9	1.2	5.0	2.0	0.0	0.0
Total Score				2.1		3.2		3.9		3.0
Selected Technology								Best		
16										

Primary Treatment Design Recommendations

- Downsize EQ basin from 1.5MG to 0.5MG
- Pipes designed to bend to induce proper mixture
- Ballasted Clarifier with a footprint of 15 m²
- 180 lb/day of sand is introduced
- Wastewater fed with alum

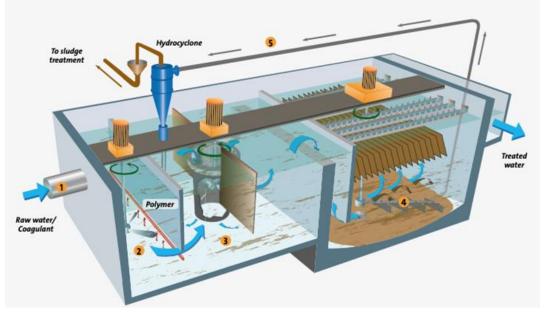
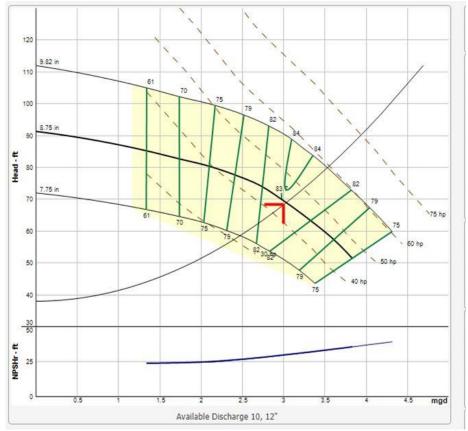
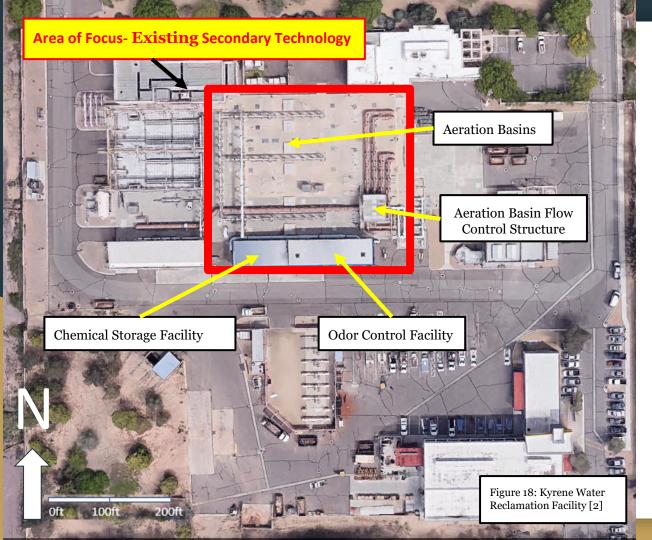



Figure 16: Diagram of ACTIFLO®PACK [8]

Primary Treatment Design Recommendations



Flow Equalization Station

Table 6: Flow Equalization Pumps

Pump No.	1	2	3
Flow (MGD)	1	1	1
Head (ft)	68.9	68.9	68.9
RPM	1770	1770	1770
Efficiency	83.4%	83.4%	83.4%
Power (hp)	43.9	43.9	43.9

Figure 17: Pump Curve

Existing Secondary Components

- Concrete Aeration Basin (4.5 MGD Capacity)
- 6 Aeration Basins
- Jet Aeration System
- Covered

Secondary Treatment Decision Matrix

				Detailed	Secondary Decisio	n Matrix				
Crite	auta	Weight	Exi	sting	Alt. 1 Micr	roalgae Syst.	Alt. 2 Ammanox Reactor		Alt. 3 Biomembrane Reactor	
Crite	eria	Weight	Input	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score
Feasibility	Area (m2)	25%	2065.7		200000.0		874.0		1020.0	
Feasibility	Final Score	23%	2.1	0.5	0.0	0.0	5.0	1.3	4.3	1.1
	Operational Cost (\$/yr)		2396012		8861600		671600		1939478	
0014	Life Span (yr)	2004	8.0		11.0		15.0		8.0	
O&M	Staffing	20%	1.0		2.0		2.0		1.0	
	Initial Score	1	1.3		1.8		3.0		1.4	
	Final Score		2.2	0.4	3.0	0.6	5.0	1.0	2.3	0.5
	Power (kW-hr/yr)		57396		1755757		1359105		1972350	
Environmental/So	By-Products	20%	3.0		2.0		1.0		2.0	
cial Impacts	Initial Score	2076	2.0		0.7		0.4		0.7	
	Final Score		5.0	1.0	1.7	0.3	0.9	0.2	1.7	0.3
Lifecycle Costs	Capital Cost (\$)	5%	2780012		89000000		22710400		24352485	
Lifecycle Costs	Final Score	5%	5.0	0.3	0.2	0.0	0.6	0.0	0.6	0.0
	BOD Rem. (%)		85%		83%		85%		99%	
Contaminant Removal	Tot. N Rem. (%)	30%	97%		82%		95%		99%	
Efficiency	Initial Score	30%	1.8		1.7		1.8		2.0	
	Final Score	· !	4.6	1.4	4.2	1.3	4.6	1.4	5.0	1.5
Total Score				3.6		2.2		3.8		3.4
Selected Technology								Best		
20	.0									

Secondary Treatment Design Recommendations

Table 7: Anammox Reactor Design Parameters

Anammox Reactor Parameters							
Hydraulic Retention Time (hr)	0.6						
Wet Sludge Produced (kg/day)	36.9						
Volume (m3)	266						
Dimension	24ftx24ftx17ft						
Required Air (kg/day)	11146						

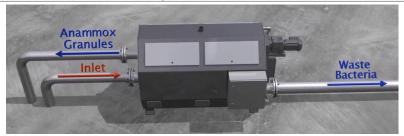
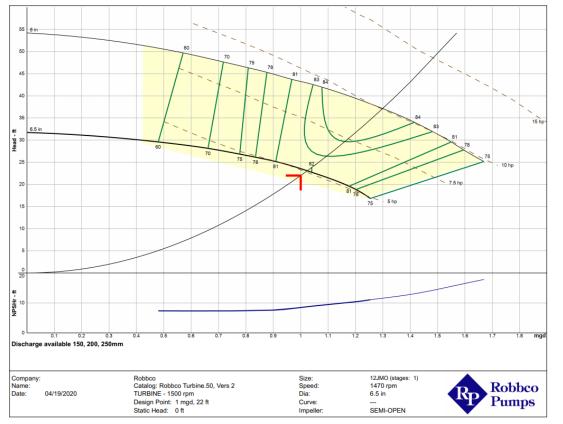
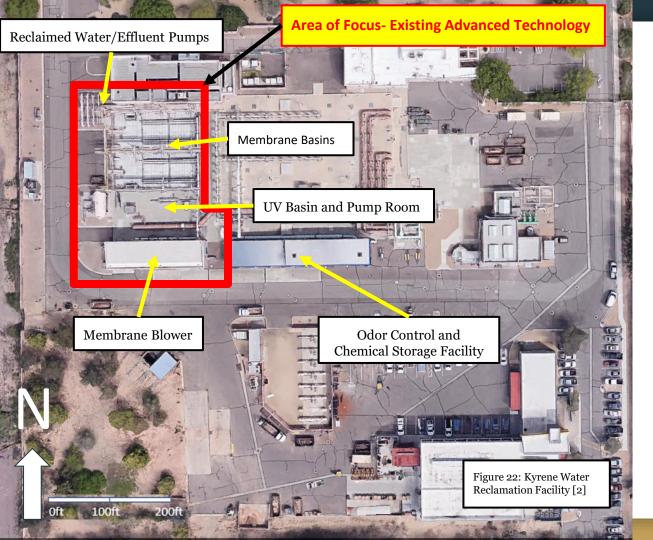



Figure 20: Micro screen [9]

Figure 19: Demon® Anammox Reactor [9]

Secondary Treatment Design Recommendations



Recycle Pump Station

Table 8: Recycle Pump Station Pumps

Pump No.	1	2	3
Flow (MGD)	1	1	1
Head (ft)	22	22	22
RPM	1470	1470	1470
Efficiency	81.9%	81.9%	81.9%
Power (hp)	5.05	5.05	5.05

Figure 21: Pump Curve

Existing Advanced Treatment Components

- 7 UV Reactor Trains
- 6 VFD Permeate Pumps
- 3 Effluent Pumps
 - 1/4th of Effluent to SRP Power Plant
 - 1/4th of Effluent to Ken McDonald Golf Course
 - ¹/₂ of Effluent to Storm Sewer

Advanced Treatment Decision Matrix

	Detailed Advanced Treatment Decision Matrix										
Criteria		Weight	Exi	isting	Alt. 1 Reve	erse Osmosis	Alt. 2 VigorOX WWTII + UV		Alt. 3 Chlorine		
Crit	eria	weight	Input	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score	
Faasibility	Area (m2)	10%	45.0		34.4		30.0		212.4		
Feasibility	Final Score	10%	3.3	0.3	4.4	0.4	5.0	0.5	0.7	0.1	
	Operational Cost (\$/yr)		19190		120000		280000		85600		
0.014	Life Span (yr)	2004	10.0		13.0	/	25.0		20.0		
O&M	Staffing	20%	3.0		2.0	· · · · · · · · · · · · · · · · · · ·	3.0		2.0		
	Initial Score	. !	2.4		1.3		2.1		1.7		
	Final Score	!	5.0	1.0	2.8	0.6	4.3	0.9	3.5	0.7	
	Power (kW-hr/yr)		27027		61320		15000		1096		
Environmental/So	By-Products	200/	3.0		2.0	· · · · · · · · · · · · · · · · · · ·	3.0		1.0		
cial Impacts	Initial Score	30%	1.0		0.7		1.1		1.3		
	Final Score	·!	3.9	1.2	2.6	0.8	4.0	1.2	5.0	1.5	
Liferusla Costa	Capital Cost (\$)	10%	244000		1000000	· · · · · · · · · · · · · · · · · · ·	515000		1497333		
Lifecycle Costs	Final Score	10%	5.0	0.5	0.1	0.0	2.4	0.2	0.8	0.1	
Contaminant -	Colifrom Rem. (%)		98%		97%		100%		99%		
Removal	Particle Rem. (%)	30%	20%		95%		75%		65%		
Efficiency	Initial Score	, 1	1.2		2.0		1.8		1.7		
	Final Score	!	3.0	0.9	5.0	1.5	4.5	1.4	4.2	1.3	
Total Score				3.9		3.3		4.2		3.6	
Selected Technology								Best			
24											

Advanced Treatment Design Recommendations - VigorOX

Table 9: Advanced VigorOX Design Table

- Placed in-line before UV Reactor Trains
- VigorOX with UV proven to be 50% more efficient
- Produces Class A+ Effluent that is eligible for groundwater recharge
- By products of VigorOX WWTII:
 - Water
 - Oxygen
 - Vinegar

VigorOX WWTII					
Parameter	Result				
Chemical Makeup	15% Peracetic Acid (PAA) 23% Hydrogen Peroxide				
EPA and NCPED Approved	Requirement Met				
Levels of Disinfection Byproducts (DBP)	None				
pH Range	4.1-8.9 ±				
E. Coli Inactivation %	100%				
PAA Amount Required to Meet Permit	2 mg PAA/L				
Area (sq. m)	17.21				
Dimensions (m)	3.5m x 1.5m x 2m (LxWxH)				
Amount of VigorOX WWTII per Day	23 GPD				
Amount of Chemical Usage for a Chlorine System per Day	235 GPD				

Advanced Treatment Design Recommendations- UV

Table 9: Advanced Design for Current and Proposed

<u>Attributes</u>	Current UV System	Proposed UV System	
# of Reactor Trains	7	4	
Туре	Mercury Arc Lamps	Mercury Arc Lamps	
Average Designed Flow (MGD)	9	3	
Dosage (µW-s/cm ²)	80000	80000	
UV Transmittance	70%	70%	
Effluent Quality	Class A+	Class A+	
Germicidal Wavelength (nm)	253.7	253.7	
Chemical Cleaning System	Citric Acid	Citric Acid and VigorOX	
Area(m2)	208.7	120	
Power (kW)	68	39	
Dimensions	7.9mx8.1mx3.96m	4.5mx4.6mx3.96m	

26

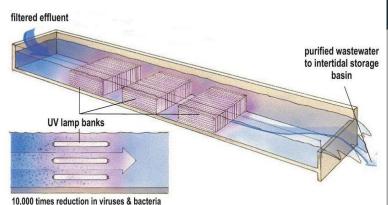
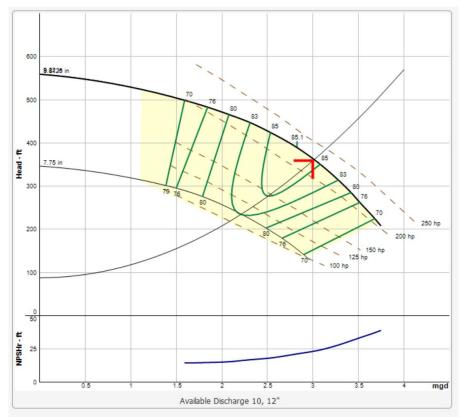



Figure 23: UV Disinfection [10]

Effluent Pump Design Recommendations

Effluent Pump Station

Table 10: Effluent Pump Station Pumps

Pump No.	1	2	3
Flow (MGD)	1	1	1
Head (ft)	175	175	175
RPM	1770	1770	1770
Efficiency	84%	84%	84%
Power (hp)	39.2	39.2	39.2

Figure 24: Pump Curve

Biosolids Handling Decision Matrix

	Detailed Biosolids Handling Decision Matrix											
			Existing		Alt. 1 Bio-Fix		Alt. 2 Centrysis Thickener & Centrifuge		Alt. 3 Gravity Belt & Anaerobic Digester		Alt. 4 Thermal Hydrolysis Process Reactor	
Crit	eria	Weight	Input	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score
	Area (m2)		0.0		32.5		125.0		200.0		400.0	
Feasibility	Final Score	5%	5.0	0.25	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Operational Cost (\$/yr)		0.0		271896		488354		453809		475000	
	Life Span (yr)		0.0		25.0		15.0		20.0		30.0	
	Staffing		3.0		2.0		3.0		2.0		4.0	
	Initial Score		1.8		1.3		1.3		1.2		2.0	
O&M	Final Score	10%	4.4	0.4	3.3	0.3	3.1	0.3	2.9	0.3	5.0	0.5
	Power (kW-hr/yr)		0.0		49579		75432		69789		65000	
	Wet Sludge (ton/day)		0.0		23.2		12.2		10.4		14.0	
Environmental/So	Initial Score		2.0		0.2		0.4		0.4		0.3	
cial Impacts	Final Score	25%	5.0	1.3	0.5	0.1	0.9	0.2	1.1	0.3	0.8	0.2
	Capital Cost (\$)		0.0		1500000		3457600		4074000		3000000	
Lifecycle Costs	Final Score	10%	5.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Contaminant Removal	Class of Biosolids		0.0		4.00		3.00		3.00		2.00	
Efficiency	Final Score	50%	0.0	0.0	5.0	2.5	3.8	1.9	3.8	1.9	2.5	1.3
Total Score				2.44		2.96		2.42		2.44		1.96
Selected Technology						Best						

Biosolid Handling Tech Recommendation

- Alkaline Stabilization Process
 - Bio-Fix by Synagro
- Produces Class A+ Biosolids
- Requires pH of 12 and temp. Of 70 degrees Celsius for 30 min. to pass as class A
- Class A Biosolids sells for avg. \$15/ton
 - \circ ~\$130,000/year for profit

Table 11: Bio-Fix Parameters

Bio-Fix Parameters					
Dry Ton Produced (ton/day)	4.35				
Wet Sludge Produced (ton/day)	23.28				
Power (kW-hr/yr)	49,579.16				
Area (SQ. FT)	350				
Dimensions (LxWxH) (ft)	29x12x17				
Required CaO (ton/day)	6.53				

Figure 25: Alkaline Stabilization Pit [11]

Addition of Solar Power

- Capital includes:
 - Cost of Equipment
 - $\circ \quad \text{Cost of Installation}$
- Investment has a payback cost in about 7.1 years

Table 12: Solar

	* * * * *	

Figure 26: Axitec Solar Panel [12]

Manufacture	Location	Area (ft ²)	Power (kW)	Capital Cost (\$)	Life Span (yr)	Annual Savings (\$)
Axitec	Parking Lot	16,200	250	\$327,600	25	\$70,000
Axitec	Admin Building	14,440	250	\$271,600	25	\$62,395
Total	N/A	30,640	500	\$599,200	N/A	\$132,395

Final Design

Table 13: Final Effluent Analysis

Parameter	Effluent Results		
BOD5	8.40 mg/L		
Total Nitrogen	0.46 mg/L		
Ammonia (as N)	1.90 mg/L		
Settleable Solids	1.0 mg/L		
Suspended Solids	14.81 mg/L		
Fecal Coliform	Non-detectable in 4 of 7 samples		
Turbidity	Less than 2.0 NTU		

Figure 27: Layout of Retrofit Design

Staffing Estimates

Table 14: Staffing Estimations

Staffing Estimations						
Estimated Annual Hours of O&M	5039.25					
Estimated Required Staff	4					
Specialized Staff Members	4					
Total Estimated Staff	8					

- 5 Major areas of work:
 - basic operations, maintenance, lab operations, sludge handling, and yard work
 - 4 Employees Necessary for this work
- Specialized Positions:
 - i.e. Managers, Inspections, machinist, etc.
 - 4 more staff-members necessary

NEIWPCC

THE NORTHEAST GUIDE FOR ESTIMATING STAFFING AT PUBLICLY AND PRIVATELY OWNED WASTEWATER TREATMENT PLANTS (24/7 Plant)

Plant Name:	Kyrene Reclamation Facility

Design Flow: <u>3 MGD</u>

Actual Flow: N/A

FINAL ESTIMATES						
Chart #	Annual Hours					
1 – Basic and Advanced Operations and Processes	2007.5					
2 – Maintenance	894.25					
3 – Laboratory Operations	1726.5					
4 – Biosolids/Sludge Handling	91.25					
5 – Yardwork	320					
Estimated Operation and Maintenance Hours	5039.25					
Estimated Operation and Maintenance Staff	4					
Estimated Additional Staff from Chart 7	4					
Total Staffing Estimate	8					

Figure 28: Required Staff Form [13]

Cost of Recommendations

- Capital includes:
 - Cost of Equipment
- O&M includes:
 - Power
 - Chemicals/Additions
 - Maintenance
 - Replacements
- Projected Cost for opening year 2025
 - \circ Assumes 2% interest

Table 15: Proposed Recommendation Cost

Proposed Recommendation Costs							
Process	Year 2020	(Present)	Year	Year 2025			
rrocess	Capital Cost (\$)	O&M (\$/yr)	Capital Cost (\$) O&M (\$/yr				
Preliminary	\$7,054	\$100,196	\$7,788	\$110,624			
Primary	\$1,511,581	\$390,477	\$1,668,908	\$431,118			
Secondary	\$1,311,781	\$483,988	\$1,448,312	\$534,362			
Advanced Treatment	\$379,000	\$135,386	\$418,447	\$149,477			
Biosolids Handling	\$1,500,000	\$272,024	\$1,656,121	\$300,337			
Construction Costs	\$12,697,200	N/A	\$14,018,735	N/A			
Solar Electricity	\$599,200	\$14,800	\$661,565	\$16,340			
Total	\$18,005,816	\$1,396,870	\$19,879,876	\$1,542,257			

Impacts

- Environmental
 - Negative: fossil fuels consumption and depletion cause global warming
 - Positive: production of biosolids/land application, and renewable energy usage, recharge groundwater
- Social
 - Negative: odor pollution, noise pollution, stigma of chemical and biosolids storage
 - Positive: Apportion the distribution of wastewater, increase recreation, save water costs, create jobs, increase economy revenue, more housing
- Economic
 - Negative: expensive expenditure, disrupt the local economy equilibrium
 - Positive: stimulate the construction and wastewater technology industries, provide regular employment, create jobs in the transportation industry

Questions?

References

[1] "Maps of Arizona", *MapofUS.org*, Available: <u>https://www.mapofUS.org/arizona/</u> [Accessed 01/30/2020]

[2]: Map showing Kyrene Water Plant, *Google Earth*. earth.google.com/web/

[3]AZ Water Association. "Kyrene Tour Presentation", Jan 25, 2020. Presentation.

[4] Arizona Administrative Code. "Title 18, Chapter 11" Phoenix, AZ, 2020.

[5] Duperon, "The Duperon FlexRake", Duperon Adaptive Technology, 2019, Saginaw, Missouri.

[6] Smith and Loveless, "Pista 360 or 270 Non-Baffled Grit Chambers", *Smith and Loveless, Inc.* Available: https://www.smithandloveless.com/products/grit-removal-systems/pista-360-or-270-non-baffled-grit-chambers [Accessed: 02/28/2020]

[7] M. DAvis, Water and Wastewater Engineering Design Principles, McGraw Hill, 2010.

[8] United States Environmental Protection Agency, "Wastewater Technology Fact Sheet Ballasted Flocculation", Office of Water EPA, 2003, Cary, NC.

[9] Worldwaterworks.com. 2020. DEMON® Anammox Treatment Technology - Technologies - World Water Works. [online] Available at: ">https://www.worldwaterworks.com/technologies/demon> [Accessed 12 March 2020].

[10] Bix.co, "A Trial of VirgorOX WWTII, a PAA-based Formula to Treat Pathogens", *PeroxyChem - Case Study*, 2018, [Online], Avaialbe: https://www.peroxychem.com/ [Accessed 0310/2020]

References Continued

[11]Synagro, "Alkaline Stabilization", *Syangro: Your Partner for a Cleaner, Greener World*, Available :<u>https://www.synagro.com/offerings/alkaline-stabilization/</u> [Accessed 15 April 2020].

[12] Solartech, "Axitec 210 W Monocrystalline Solar Panel, All Black," *SolarTech Direct*, [Online], Available: https://www.solartechdirect.com/products/axitec-310w-monocrystalline-solar-panel-allblack?utm_medium=cpc&utm_source=google&utm_campaign=Google%20Shopping&gclid=CjwKCAjw-YT1BRAFEiwAd2WRtomJkutZJNwboOFh255Auc1IM0q8Iiae0_09PvaCc9L-dNZOEvF9YhoCUEkQAvD_BwE [Accessed 04/05/2020]

[13] NEIWPCC, *The Northeast Guide for Estimating Staff at Publicly and Privately Owned Wastewater Treatment Plants*, New England Institute Water Pollution Control Commission, Lowel, MA, Nov. 2008.